

53rd Annual GSSA Congress 22-27 July 2018

Plant and soil carbon-nitrogen sequestration and isotope ratios in relation to land management systems and seasons in Mopane savannah, Namibia

> Absalom Kahumba Solomon T Beyene

Outline

- Introduction
- Study objectives
- Materials and methods
- Data analysis
- Results and discussion
- Conclusion and recommendation
- Acknowledgements

Introduction

- In Sub-Saharan Africa, rangelands support livestock and wildlife production.
- And also serve as sources of livelihood and income generation for the majority of the human population.
- Rangelands represent the largest potential carbon sink that could be managed to increase carbon-nitrogen sequestration at a landscape level.

Introduction cont....

- At present, in Namibia, rangeland ecosystems are used for animal production purposes practiced under three main land management systems, namely:
 - communal-continuous,
 - commercial-rotational and,
 - wildlife-continuous
- As a result, impact of land management on the ecosystems stability and functions differ greatly.
- The stable δ¹³C and δ¹⁵N isotope ratios of soil and vegetation components serve as a useful tool for examining ecosystem responses to environmental changes as altered by land management systems (Farquhar *et al.*, 1989).

Study objectives

- 1) To determine total plant and soil carbonnitrogen under three land management systems in two seasons.
- 2) To investigate the responses of C and N isotope ratios to land management systems.

Materials and methods

Study area

Omusati Region

Description of the study areas

- The study was conducted in Omusati region, particularly, Ogongo District, central-northern Namibia.
- Omusati is one of the 14th political regions of Namibia and covers 26573 km².
- Human population of about 229000 (NPC, 2011)

Soil type of the central-northern Namibia

Sample site selection and layout

Data collection (Field Sampling)

Data collection cont....

- Three 250 m² belt transects randomly laid in each of the 3 camps per land management system.
- Woody plant sampling:- Leaves and twigs

- bulked and oven-dried at 65 °C

- Herbaceous plant sampling:- five (0.25 m²) quadrats
 bulked and oven-dried at 65 °C
- Soil sampling:- 3 soil samples per belt transect
 - depth of 20 cm using a soil auger
 - and a soil core sampler for soil bulk density

Data analyses

C and N. analyses (Plant and soil)

- TC: determined through the dry combustion in ovens at 750 °C for 2 hours.
- TN: performed by the standard Kjeldahl method.

The δ^{13} C and δ^{15} N isotopes analyses

• Carried out at the Stable Light Isotope Unit of the University of Cape Town in South Africa.

Statistical analyses

- Soil and plant TC, TN, δ¹³C, δ¹⁵N and C:N ratio:- General Linear Model (GLM) procedure of SAS (2007).
- The soil and plant C, N, δ¹³C, δ¹⁵N, C:N ratios and bulk density:subject to a two-way ANOVA according to the GLM procedure of SAS to test variations between land management systems as well as between season

Results and discussion

Total organic carbon, total nitrogen (%) and C:N ratios of the herbaceous

Sitos	Herbaceous plants						
	тос		TN		C:N		
	Summer	Winter	Summer	Winter	Summer	Winter	
		11					
Game	37.0 ^{bA}	43.3 ^{aA}	1.0 ^{aA}	0.5 ^{bB}	38.7 ^{bA}	109.9 ^{aA}	
Ranch	36.0 ^{bA}	42.2 ^{aA}	1.1 ^{aA}	0.7 ^{bA}	34.0 ^{bA}	83.5 ^{aB}	
Communal	32.9 ^B	-	1.1 ^A	-	30.1 ^A	-	
SE	1.1		0.07		4.9		

Total organic carbon, total nitrogen (%) and C:N ratios of woody vegetation (means)

Sitos	Woody vegetation						
Siles	TOC (%)		TN (%)		C:N		
	Summer Winter		Summer	Winter	Summer	Winter	
Game	50.2 ^{aA}	50.1 ^{aA}	2.1 ^{aA}	1.5 ^{bA}	25.3 ^{bB}	34.9 ^{aB}	
Ranch	49.9 ^{aA}	43.2 ^{bB}	1.4 ^{aC}	1.0 ^{bC}	40.1 ^{bA}	48.1 ^{aA}	
Communal	49.9 ^{aA}	50.2 ^{aA}	1.8 ^{aB}	1.2 ^{bB}	28.1 ^{bB}	49.8 ^{aA}	
SE	0.5		0.1		1.5		

Carbon and nitrogen isotopes (‰) of the herbaceous and woody plants (means)

	Herbaceous plants				Woody vegetation			
Sites	δ ¹³ C		$\delta^{15}N$		δ ¹³ C		$\delta^{15}N$	
	Summer	Winter	Summer	Winter	Summer	Winter	Summer	Winter
		10.004						
Game	-13.6 ^{aA}	-13.8ªA	3.8 ^{ab}	2.8 ^{aA}	-25.8 ^{ab}	-25.8 ^{ab}	5.4 ^{aA}	4.8 ^{aA}
Ranch	-14.9 ^{aAB}	-15.6 ^{aB}	3.2 ^{aB}	3.2 ^{aA}	-25.0ªA	-17.3 ^{bA}	3.9 ^{aB}	2.6 ^{bB}
Communal	-15.1 ^B	-	8.7 ^A	×.	-24.8 ^{bA}	-25.9 ^{aB}	5.0 ^{aA}	4.2 ^{aA}
SE	0.5		1.2		0.2		0.3	

Total organic carbon, total nitrogen of the vegetation (kg ha⁻¹) (mean).

		TOC	1	TN
Sites				
	Summer	Winter	Summer	Winter
	//			
Game	44201.1ªA	34533.0 ^{bA}	1504.3 ^{aA}	661.5 ^{bA}
Ranch	37693.8 ^{aB}	30985.8 ^{bB}	1310.8 ^{aB}	625.2 ^{bA}
Communal	24461.1 ^{aC}	16136.3 ^{bC}	787.5 ^{aC}	424.0 ^{bB}
SE		3499.3		103.6

Mean soil TOC, TN, C:N ratios in relation to land management systems and seasons

	TOC (%)		TN (%)		C:N	
Sites	Summer	Winter	Summer	Winter	Summer	Winter
Game	0.3 ^{aA}	0.3 ^{aA}	0.03 ^{aB}	0.03 ^{aB}	10.9 ^{aA}	10.8 ^{aA}
Ranch	0.3 ^{aA}	0.2 ^{bB}	0.05 ^{aA}	0.06 ^{aA}	10.5 ^{aA}	10.5 ^{aA}
Communal	0.2 ^{bB}	0.3 ^{aA}	0.02 ^{aB}	0.03 ^{aB}	9.7 ^{aB}	10.5 ^{aA}
SE	0.01		0.02		0.5	

Soil $\delta^{13}C,\,\delta^{15}N$ in relation to land management systems and seasons

	δ ¹³ C		δ ¹⁵ N	
Sites	Summer	Winter	Summer	Winter
Game	-18.5 ^{aC}	-18.8 ^{aC}	5.2 ^{aC}	5.3 ^{aC}
Ranch	-17.8ªB	-18.1 ^{aB}	6.4 ^{aB}	6.0 ^{aB}
Communal	-17.2ªA	-17.4 ^{aA}	7.3 ^{aA}	7.5 ^{aA}
SE	0.2		0.2	

Total soil organic carbon (kg ha⁻¹)

Land management systems

Conclusion and recommendation

- The study concludes that game reserve sequester more TOC and TN (kg ha⁻¹) in the total vegetation than the other two land management systems in both summer and winter.
- The game reserve also stored more soil TOC (kg ha⁻¹) than the ranch and communal.
- Research to be conducted by including land management systems in different agro-ecologies and for a prolonged period to ascertain the impact of land use practices and seasonal dynamics of the measured variables.

Acknowledgements

- University of Namibia
- University of Fort Hare
- Headmen

Thank you very much for your attention!!