A floristic comparison between natural and disturbed grassland following the removal of pine plantations

by Hylie Olivier

CAN A GRASSLAND RESTORE TO ITS NATURAL STATE AFTER SOME TIME – FOLLOWING THE REMOVAL OF PINE SPECIES???

"Once a grassland is transformed through afforestation, the change is permanent" (Van Wyk, date unknown).

To test this we compared natural grassland with disturbed grassland at different ages after

Background information

□ Grasslands:

- One out of six grassland plants is a grass. Rest are forbs, shrubs, sedges or grasslike plants (Camp & Daugherty, 1997:78).
- Fire is critical in the conservation and management of a grassland (Van Wyk, 2003).

□ Forestry:

- Excision: delineation of wetlands and riparian areas (DWAF, 2005); rocky areas insufficient soil depth / poor tree growth; other management considerations firebreaks, infrastructure.
- Grasslands on plantation: in between tree compartment. Requires: specific conservation and special management (Marais, 2000:22).

□ Restoration and succession:

- Grazing and fires large influence on grassland restoration (Rostagno, 2006:169).
- Restoration achieved through succession (Hambler, 2004:276).
- Mostly weeds and indigenous pioneer plants that colonise disturbed habitats (Hugo *et al.*, 1997:43).

Study Area in Mpumalanga

Methodology used

- 6 research areas, each with 2 adjacent grassland sites: 1 natural and 1 excised (disturbed).
- Excised ages 2 18 yrs.
- Altitudes: 1669 2064 m
- 10 sample plots in natural and 10 in excised sites.
- Size of sample plots: 2 x 2m quadrats (x 10 plots = 40m² total sample area). Total of 120 sample plots.
- Statistical analysis:
 - PRIMER version 5
 - EstimateS (species richness) version 8.0
- Floristic comparison of life forms

Example of research area: Waste site (12vr) excised & natural plots

Example of research area: Taljaardsvlei 16yr site – excised & natural plots

Results overview

- Great diversity between natural and excised areas expected and verified.
- Rate of succession seems very slow possible reasons environmental variables, i.e. high altitude, soil type and depth, fire frequency etc.
- Weak successional trend identified amongst different aged sites.
- Not studied whether burning has impact on rate of succession (i.e. faster restoration).

Degree of succession in plantation vegetation plots

Bray Curtis Similarity index (table & graph)

Species richness

Site name	Excised	Natural
Rock Gardens 18,5 yrs	19	31
Buffelskloof 17 yrs	15	40
Taljaardsvlei 16 yrs	10	44
Waste site 12 yrs	12	32
Taljaardsvlei 2,5 yrs	24	49
Dams site 1,5 yrs	19	25

Fuel load values (kg/ha)

Site name	Excised	Natural
Rock Gardens 18,5 yrs	3609	4678
Buffelskloof 17 yrs	4511	4511
Taljaardsvlei 16 yrs	3129	5407
Waste site 12 yrs	6596	6596
Taljaardsvlei 2,5 yrs	5557	6935
Dams site 1,5 yrs	6244	9109

Conclusion

- Excised areas available for study not old enough (oldest site 18,5 yrs).
- Other studies older sites and different altitudes.
- Replicate this study successional and restoration progress over time.
- Further investigation determine influence of fire and burning on restoration / succession.
- Above mentioned will help managers and foresters in better decision making.
- Grassland restoration will take long time (NEVER?)

References

- Camp, W.G. & Daugherty, T.B. 1997. <u>Managing our natural resources</u>. Third edition. Delmar Publishers. New York.
- DWAF. 2005. A practical field procedure for identification and delineation of wetlands and riparian areas. DWAF. Pretoria.
- Hambler, C. 2004. Conservation. Studies in Biology. Cambridge University Press. Cambridge.

 Hugo, M.L., Viljoen, A.T & Meeuwis, J.M. 1997. The ecology of natural resource management. The quest for sustainable living. Kagiso Tertiary. Cape Town.
- Marais, A.V.N. 2000. The measurement and monitoring of ecosystem integrity in a forestry plantation environment. Bloemfontein. (Dissertation (M.E.M.) UFS).
- Rostagno, C.M., Defossé, G.E. & Del Valle, H.F. 2006. Postfire vegetation dynamics in three rangelands of Northeastern Patagonia, Argentina. *Rangeland Ecology & Management*. 59(2): 163-170.
- Ecology & Management. 59(2): 163-170. Van Wyk, B. 2003. Southern African Grasslands: Aspects of its Biodiversity, Dynamics and Management. (Transcription of a presentation delivered at the "Timber Plantations: Impacts, Future Visions and Global Trends" conference on 13 November 2003). Nelspruit. Van Wyk, B. Date unknown. Grassland The most threatened biome in South Africa. Published on the web: http://www.geasphere.co.za/articles/grasslands.htm (Date accessed: 15 November 2007).

THANK YOU

ANY QUESTIONS?